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Last lecture 8 intervals a characterization of interval and
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Proof Let In an bn for some ans bn Tn c IN by Cit
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Consider Cl An in c IN E 1B

A 101 and Cl is bold above by b

Completeness of IR M sup A e B is well defined
A

Claim 7 E N In i e 2C In An bn for each n ENne

PfofClaim y is an upper bd of A An E 7 the N

Want 7 E bn th C IN

By Contradiction Suppose NOT 7 m c IN s t bmt7
Since 7 is the l u b of Cl so bm cannot be an upperbot
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If m L k then bh E bin Lak Contradiction

If m 3k then bm L Ak E am Contradiction1
This proves 1 Exercise Proof of a a contradictionargument



Recall IN Q countable

Corollary IR is uncountable

Proof Suffices to prove Co I is uncountable

Suppose NOT ie o i f Xi Xa Xz 4 J
we will define inductively a seq of nested closed bold internals In NEIN

Choose Ii a Co I closed and bold
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So In is closed bold and nest
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Sequences and their limits 3 1

GOAL Define Lim Xu x study its propertiesn

and determine convergence divergence of sequences

Q what is a seq of real numbers

Def't A sequenceof real numbers is a function X IN IR

denotes X I X X z Xz X n Xn
p

defining

write X Xn X Xz Xz Xn



Seq Vs Sets In general Xn n cIN L f Xn n c IN

Eg l l 1 I I I ordered infinite

unordered couldbeC l in c IN I I finite

Examples 1 constantseq 1,1 1,1 I

z geometric seq C'T T T t Tz En

3 arithmetic seq 1,4 7 lo 13 11 3Cn l

even no Co 2 4 6 8
odd no 1 3 5 7 9

4 Fibonacci seq inductively1recursively defined

X 1 i Xz 1

for n 3 Xn Xn Xn z

Xn 1 1 2 3 5 8 13

Consider ht 1 I E T E loot
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Q How to describe this Feeling o towards the
end of theseq

Defa E K definition of limit
limca x
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we say xn converges to X E IR writer figgxn x
or
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i.e X E L xn L X E for any n 3k e te
f whenn K

Idea Xn eventually getsvery close to X
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Example lim ht 0

Let E 20 be fixed but arbitrary byArchemedian

Choose K E C IN s t E ie K t.gs Property

Want V n z K we have

f o In In e I s Ek
b

Terminology Given a seq xn we say
1 Xn is convergent if I C IR s t lim xn X

z Xn is divergent if it is NOT convergent
i e 47 X C IR s t lim xn X

Dynamical view of limit

Recall Lim ht O
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Q what about the case when limit does exist



A divergentexample Xn C l C l I I I I I

Claim This seq is divergent i.e Xn X x for any X EIR

Q Is lim xn o No T I 1 of a B
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LOSE lim xn 1 0

Q Is lim xn 1 No
o or Z
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